

NRTC/RITA Rotorcraft Airloads Workshop UH-60 Rotor Airloads/Blade Loads - Comments

Robert A. Ormiston

Army/NASA Rotorcraft Division
Aeroflightdynamics Directorate
US Army Research Development & Engineering Command
Ames Research Center, Moffett Field, California

Stanford University Aug 31 - Sept 1, 2004

Overview of Recent Activities

- Mechanical Airloads Analysis calculation of dynamic response from measured airloads & damper force
 - Summary findings & adequacy of structural dynamics analysis
 - Experimental test data accuracy & blade property data issues
- Comprehensive Analysis Airloads & Blade Loads
- CFD Airloads
- Some suggested actions

UH-60 Structural Model

UH-60 Hub and Blade Attachment Components

NodeRigid BarNonlinear Beam

13 Nonlinear Beam
Elements, Swept Tip

Structural Dynamics Analysis

- Mechanical Airloads Analysis results
 - Analysis & test data correlation involves
 - Code accuracy
 - Modeling errors
 - Property data errors
 - Experimental test data errors
 - Vibratory blade loads (flatwise, edgewise, torsion moments & pushrod force) calculated from measured airloads and damper forces generally agreed very well with measured blade loads
 - Mechanical airloads analysis accuracy sensitive to structural resonance (e.g., 1st flap & torsion freqs near 1 & 4/rev) measured airload & blade property errors
 - "Unresolved" accuracy issues
 - I/Rev blade motion
 - Blade 5/rev edgewise, 4 & 5/rev torsion moments
 - Mean pushrod loads, including blade-to-blade differences
 - Upper shaft bending moment, particularly 1/rev phase
 - Shaft torque, particularly mean value
- Modern multi body, finite element (MB, FE) rotorcraft structural dynamics codes appear reasonably satisfactory and accurate for rotorcraft applications

Experimental Test Data Accuracy Issues

- Measured test data considered likely or possibly erroneous
 - Mean values of blade bending moments at two flatwise locations, several edgewise locations, and two torsion locations
 - Mean flapwise bending moments, 11.3%R, 70%R
 - Mean edgewise bending moments, 30%R, 40%R, 50%R, 60%R
 - Mean torsion moment, 30%R, 50%R
 - Mean aerodynamic pitch moments, 67.5%R, 96.5%R
 - Variation of mean lead-lag damper force, No. 1-4
 - Blade pitch, flap, lag, angles, variations and blade No. 4 pitch angle
 - Small unidentified errors in the measured airloads (cause discrepancy in the 1/rev flapping phase)
- Other considerations
 - Blade bending & torsion moment data interactions have been evaluated
 - (Hyeonsoo Yeo analyses)
 - Accuracy of Blade Motion Hardware (BMH) sensor calibration (data input for corrected blade motion) should be evaluated

Blade Property Data Issues

- Most, but not all, of the properties were sufficiently well known for the present problem. Some spec values have been revised.
- Lag damper geometry (refined, evaluated)
 - Small geometric details of the damper attachments were shown to have a large effect on pushrod and torsion loads
- Uncertain pushrod stiffness (62,631 vs 187,792 lb/ft1st torsion frequency < or > 4/rev)
- Elastomeric bearing flap, lag, and pitch rotational springs and dampers
- Pushrod and pitch bearing damping strongly influence 1/rev and 4/rev pushrod and blade torsion loads
 - Pitch bearing damping, spec value OK, 20 ft-lb/rad/sec
 - Pushrod damping was needed to achieve reasonable 4/rev torsion moments, 240lb/ft/sec (specification value = 0)
- Structural damping unknown, RCAS used 0.02% (not critical)
- Blade structural twist @ 11.3%R corrected from original spec
- Spec blade root cutout reduced from 20% to 13.04%

1/Rev Flapping Summary Comparison

Measured Airloads, Counter C8534, 158 kts

1/rev Flapping Phase Contributions

Flapping Phase = FRF Phase (Blade Dynamics) + Flap Moment Phase

$$[\beta_N]_{Phase} = \left[\frac{\beta}{\overline{M}_{\beta}}_{\omega=N}(\omega)\right]_{Phase} + \left[M_{\beta_{aero}N}\right]_{hase}$$

1P Flapping Phase, deg

1/Rev Flapping Phase - Interpretation & Conclusions

- Due to near resonance of flap mode frequency & 1/rev airloads excitation, the 1/rev flapping response amplitude and phase are determined by very small aerodynamic flapping moments
- Large flapping response sensitivity (FRF) amplifies flapping magnitude error due to 1/rev aero flapping moment experimental error
- Small errors in the measured airloads apparently cause the flapping phase discrepancy
- No specific source of this suggested error has been identified

Airloads Chord Force Contribution to 1/Rev Flapping

Rotor Shaft Torque "Error"

Contribution of chord force edgewise moment to 1/rev flapping excitation -

$$M_{\beta} = M_N \cdot \cos \theta - M_C \cdot \sin \theta$$

Airloads Workshop RCAS Activity

- Relevant RCAS Upgrades
 - Mechanical airloads analysis
 - Mechanical airloads analysis as standard option
 - Multiple algorithms
 - Direct coupling, with & w/out artificial initial damping
 - Loose coupling, arbitrary RCAS airloads for "delta" loads
 - Treat airloads, damper loads, other arbitrary loads
 - CFD Coupling, CHSSI Project
 - Rotor CFD/CSD coupling loose, tight, intermediate
 - Rotor/fuselage/empennage
 - Maneuver, vibration, aeroelastic stability
 - Investigate algorithm solution convergence
- Mechanical airloads additional test conditions
 - Counters C8533, C8524, C9017, etc., in progress
 - Complete Blade Motion Hardware Analysis

Where Are We Going? Suggestions & Action Items (1 of 2)

Mechanical Airloads Problem

- Refine participating code calculations, collect results for comparison plots. Plan for a joint workshop paper
- Compare mechanical airloads for other flight conditions to address unresolved issues - e.g., how do flap phase or chord bending moment anomalies vary with flight speed
- Collect and compare fan plots and mode shapes
- Define simple proof problem radially uniform properties & airloads
- Modeling extensions drive train dynamics, hub degrees of freedom, fuselage dynamics, vibration absorber, etc.

Comprehensive Analysis Comparisons

- Update lifting line aero calculations for consistency
- Complete comparisons for uniform inflow and linear airfoil case
- Plan for joint publication

Where Are We Going? Suggestions & Action Items (2 of 2)

CFD Activities

- CFD Current results show significant improvement over conventional lifting line methods
- But... best current CFD results not quite good enough
- Multiple CFD code and CFD/CSD coupling efforts in progress - these activities should proceed
- Efficient loose and tight coupling algorithms will evolve in the near future
- Hybrid CFD/vortex wake methods should evolve toward full wake capturing CFD methods
- Advanced CFD methodologies should be pursued
- To diagnose remaining correlation deficiencies, correlation of CFD analyses with reduced experimental data sets should be pursued, e.g., 2-D airfoils, wings, hovering rotors, etc.